VERT-Workshop within AQM2016-Conference Tehran January 2016

Benefit/Cost-Analysis and Cost-Effectiveness when using Emission Control Devices like DPF for IC Engines

Mortality and Health Cost global 2012/15 due to traffic [per year]

	Inhabitants Mio	<i>Mortality Traffic x1000</i>	Related Health Cost Mia€	Mortality per 1 Mio and year	Cost €/Pers
USA	313	200	?	638	?
California	38	9	?	236	?
London	8.1	4	24	493	2800
Schweiz	7.8	5.5	18	705	2'300
EU28	508	430	1100 ?	798	2'100
World	7000	4500	?	642	2?

Resulting Questions

- can we define a monetary value for health impacts by vehicle exhaust emissions?
- can we thus define a monetary benefit for measures like DPF to avoid this health impact?
- are these benefits higher or lower than the cost?
 In other words: is Benefit/Cost >1
- how compare DPF/GPF/DOC/SCR/SDPF/PFF
- who pays for cost and who receives benefits ?

DEFINITIONS used here

Specific Cost [€/kW]

Permits to compare cost for different size engines, different applications, influence of production volume an design but does not mirror the effectiveness nor benefits

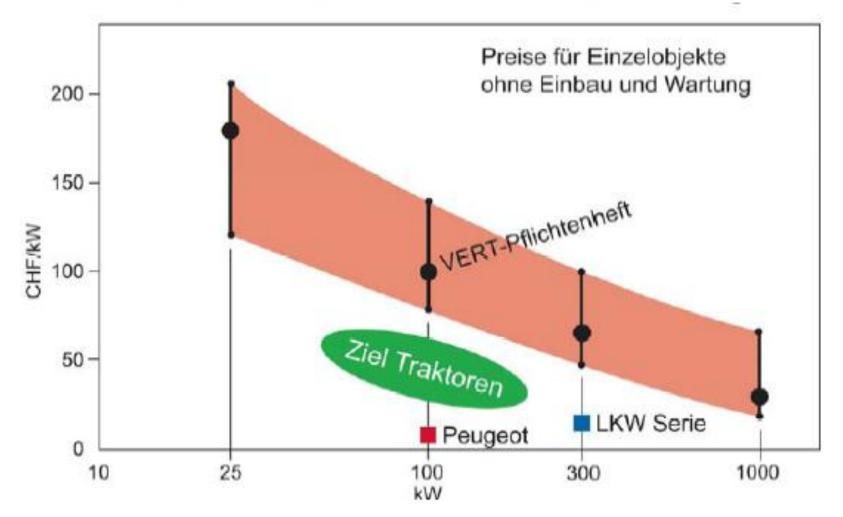
Cost-Effectiveness [€/kg soot]

Permits to compare entirely different measures (open/closed filters) with respect to cost required to reach a certain physical effect – permits to predict how much money will be required to reach for a certain target but does not tell whether the society is gaining or losing money.

Benefit/Cost-Ratio [€/€]

Now also benefits are expressed in monetary units, which allows to clearly show whether the society is gaining or losing money when introducing a certain measure to improve public health environment conditions – the only valid final argument

Different social «Stakeholders» have different viewpoints

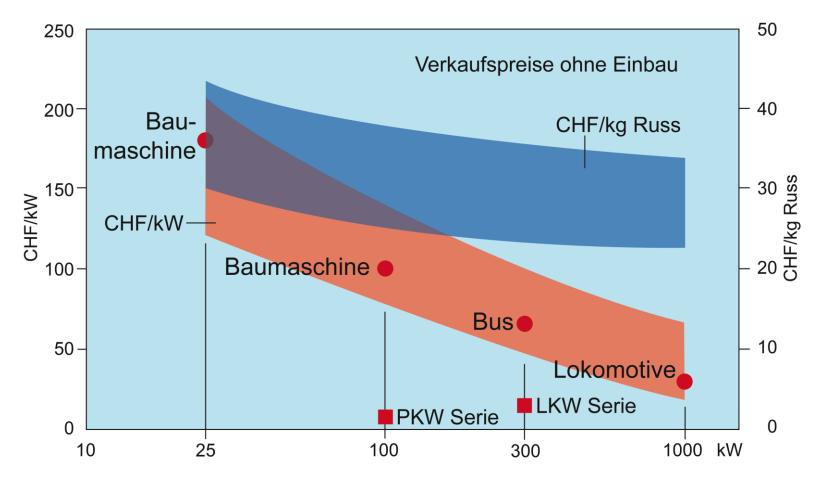

- The vehicle owner
- People getting sick from high air pollution
- Children suffering already unborn
- The Government
- The Global Climate
- Nature flora and fauna
- The Society of a State and of the Globe

FOR THE OWNER of a vehicle the implementation of a DPF has no direct commercial advantage "nothing but a Cost Factor"

- Purchase price
- Installation cost
- Maintenance involved
- Backpressure may reduce fuel economy
- Warranty for the engine may be refused
- Additional safety and dependebility aspects ?

Specific Cost €/kW

Sales Price Statistics for Retrofit in Switzerland 2005



Cost - Effectiveness

is overall Cost of a Retrofit Measure compared to the Effect – which is the Mass of not-emitted Soot due to the application of this Measure

[€] / kg Soot

Cost-Effectiveness €/kg soot for VERT-certified full flow filters at the same operation conditions

Calculate Cost Effectiveness €/kg soot for a whole Vehicle Fleet

Fahrzeug-, Geräteart	Motor- leistung	Euro- Norm	Jg.	Rest- Lebensd auer	Ersatz gemäss Mehr- jahres- planung	Betriebsstu nden oder km jährlich	Emissions- Faktor	Russ- Menge gesamt	Kosten/ Nutzen	Kosten
	KW						g/kWh	kg	Fr/kg	Fr
Kehrmaschine	100	D 00	2001	6	2012	1'617.00	0.70	339.57	20.32	6900
Schwemmwagen	63	D 00	2002	9	2015	1'292.75	0.80	293.20	23.53	6900
Kleintraktor	25	D02	2006	13	2019	1'221.00	0.80	158.73	23.94	3800
Kleintraktor	18	D 00	2002	7	2013	780.45	2.50	122.92	30.91	3800
Kleintraktor	22.2	F 01	2005	11	2017	1'149.00	0.80	112.23	33.86	3800
Transporter	45	1	1993	1	2007	455.00	0.40	4.10	927.96	3800
Transporter	34	1	1994	2	2008	291.25	0.40	3.96	959.35	3800
Walze	18	D 00	1998	8	2014	25.00	2.50	4.50	1'133.33	5100
Kompressor	32.5		1992	2	2008	47.00	2.10	3.21	1'184.63	3800
Lieferwagen	66	3	2002	9	2015	107.00	0.10	3.18	1'604.83	5100
Walze	10	D 00	1985	6	2012	30.75	3.00	2.77	1'770.55	4900
Walze	10	D 00	1984	6	2012	19.00	3.00	1.71	2'865.50	4900
Raupenbagger	13.3		2005	12	2018	6.50	2.50	1.30	2'930.40	3800
Walze	3.6	D 00	1997	7	2013	45.25	3.00	1.71	3'975.56	6800

Soot Reduction by Selection of Vehicles according to Cost-Effectiveness

11

FOR PEOPLE in Street Canyons and drivers – exposed to exhaust gas DPF/GPF provides a Health Benefit

Switzerland, year 2000: Health Effects are very large:

•	Mortality due to traffic related air pollutions	3'700
•	Mortality due to traffic accidents	600
•	Mortality due to smoking	4'000
•	Hospitalization days	15'700
•	Asthma attacks	41'100
•	Bronchitis in children	39'000
•	Days with restricted activity	1'773'800

In 2015: Mortality increased to 5'500 per year (EU agency) Respective Health Cost 18 Mia – 25% of federal budget

THE Government:

- 1. Emission is a health concern and we must protect our citizen
- 2. Emission creates high health cost which we should avoid
- Diesel Particle Emission is carcinogenic , (WHO 2012) and has no "no-effect" level
- → Health impact must therefore be minimized
- → Best Available Technology BAT required
- \rightarrow But Cost must be lower than Benefit

Cost of DPF must be lower than Monetary Health Benefit due to use of DPF

Benefit / Cost

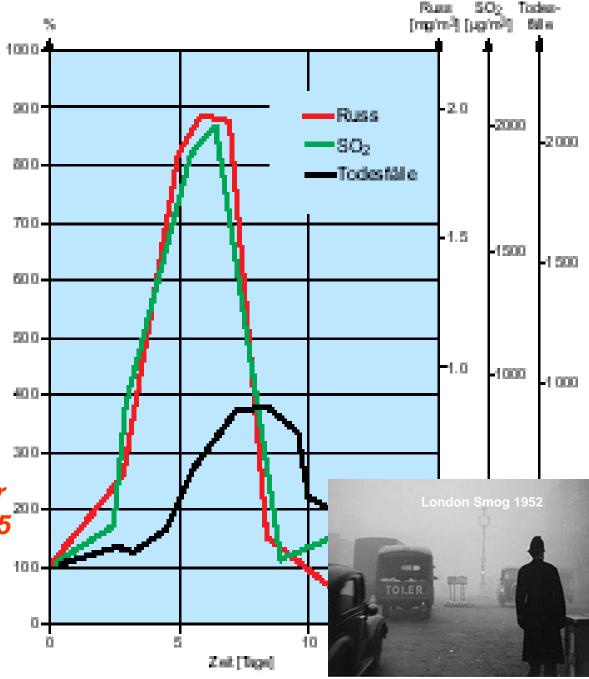
For the Society Benefits must be quantified in Monetary Terms and compared to Cost in order to decide whether a Measure is economic and therefore justified or not

Benefit / Cost – Factor [€] / [€]

a dimensionless factor \rightarrow comparing apples to apples

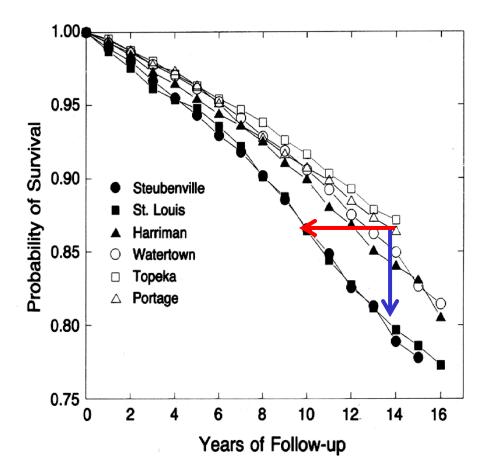
To calculate the monetary value of the health benefit needs a *Multi-Discipline Approach* (Prof.Amir Hakami, Tehran AQM 2016)

1. Epidemiology must provide the information on mortality/morbidity


2. Economy must calculate the associated cost for the society

London Smog 1952

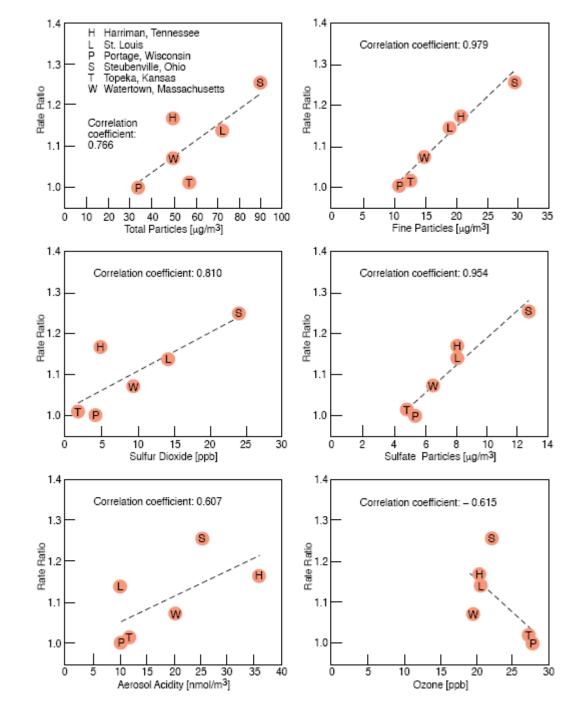
during one week died 6'000 persons 6'000 more next month

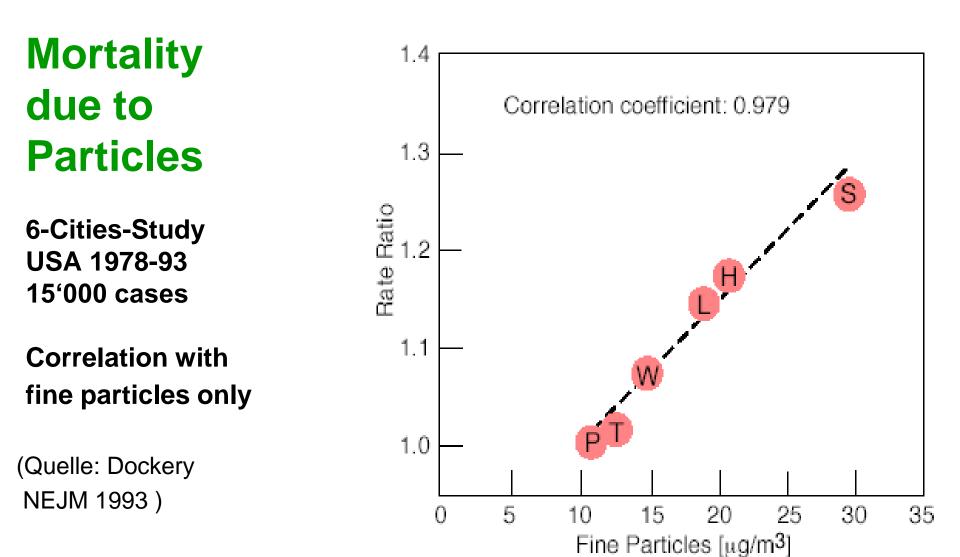

London had replaced the electric tram by Diesel buses 6 month before

The famous medical doctor Sir Percival Pott found 1775 that soot is the reason for carcinoms in chimney sweeps

1973/93 Six Cities Mortality Study

- Random sample of 8411 adults in six cities
 - Dirty: Steubenville, OH
 & St. Louis, MI
 - Moderate: Watertown, MA & Harriman, TN
 - Clean: Topeka, KS & Portage, WI
- Enrolled 1974-77
- 14-16 years of mortality follow-up

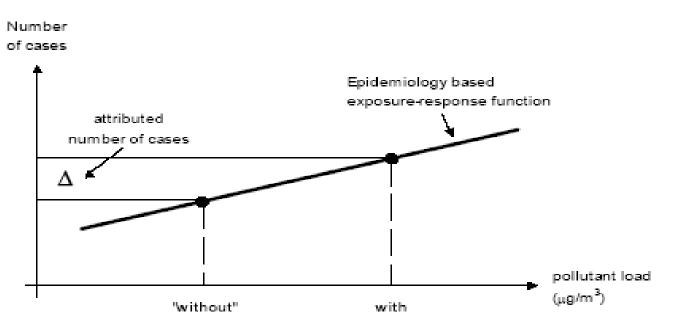

Dockery et al, NEJM 1993;329:1753


Mortality due to Particles

6-Cities-Study USA 1978-93 15'000 cases

Correlation with fine particles only

(Quelle: Dockery NEJM 1993)



Risk for premature death is proportinal to concentration increase of UFP → the linear dose-effect relationship


Epidemiologic Model for Health Cost "Dose/Effect Proportionality"

"Dose" is PM10 – Concentration "Effect" can be mortality, mobidity, hospital accesses etc.

Air Pollution (PM10)

Health Cost Elements

How to convert Public Health Effects into Monetary Terms ?

WHO and many National Health Institutions have investigated the multitude of so-called "external cost elements" like hospital cost, medication, lost working time, lateral cost, tax loss etc. in function of ambient air pollution and established dose-effect relationships.

They have statistically linked these cost to ambient air pollution to individual pollution parameters like Ozon, CO or PM10 and evaluated the integrated monetary effects on population living in megacities, cities or countryside.

2015 OECD Ecomonic Cost of health Impact

Table 1.3. Premature deaths from air pollution (APMP, HAP, and APMP + HAP) per country in the WHO European Region, 2005 and 2010

	APMP		I	HAP	APMP +	HAP				
	2005	2010	20	05 2010	2005	2010				
Albania	1 643	1 512	2 74	40 2 620	4 382	4 132				
Andorra	29	31			29	31				
Armenia	2 590	2 607	2 8		5 504	1 151				
Austria	3 642	3 122		Table 2.4. I	Economic	cost of	prema	ture deat	hs from air poll	ution
Azerbaijan	5 146	5 131	~ ~ ~	•		HAP) p	er coun	try in the	WHO Europea	n Region,
Belarus	8 400	8 236	3 2	2005 and 2	2010					
Belgium	6 169	5 663				Faanami	a anat of		Formaria cost of	nennatura
Bosnia and Herzegovina	2 171	2 016	4 E			deat	ths from <i>I</i> S\$ (millio		Economic cost of deaths from API US\$ (millio	ÁP + HAP
Bulgaria	11 269	9 492	10 1				2005	2010 ²	2005	2010 ²
Croatia	3 692	3 057	19							
Cyprus	323	299		Albania			1 358	1 673	3 622	4 572
Czech Republic	8 731	7 028	13	Armenia			1 599	2 160	3 398	3 690
Denmark	1 833	1 818		Austria		1	1 957	11 457	11 957	11 457
				Azerbaijan			3 377	7 415	5 893	10 042
				Belarus			9 296	16 534	12 900	19 865

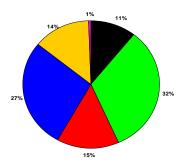
Armenia	1 599	2 160	3 398	3 690
Austria	11 957	11 457	11 957	11 457
Azerbaijan	3 377	7 415	5 893	10 042
Belarus	9 296	16 534	12 900	19 865
Belgium	19 559	19 842	19 559	19 842
Bosnia and Herzegovina	1 838	2 146	5 920	7 228
Bulgaria	13 803	16 788	2 182	32 091
Croatia	6 465	6 316	9 844	9 035
Cyprus	819	857	819	857
Czech Republic	19 862	19 321	22 834	20 901
Denmark	5 955	6 283	5 955	6 283

Pollutant	PM ₂	₅ (exhaust)		PM10	(non-exhaust)		NOx	NMVOC	SO ₂
Region type	Metropolitan	Urban	Non-	Metropolitan	Urban	Non-			
3 71			urban			urban			
Source	HEATCO	*UBA/	HEATCO	*UBA/	*UBA/	*UBA/	NEEDS	NEEDS	NEEDS
		HEATCO		HEATCO	HEATCO	HEATCO			
Country									
Austria	482,200	155,900	80,700	192,900	62,400	32,300	13'600	1'600	10'000
Belgium	483,400	156,000	104,400	193,400	62,400	41,700	8'700	2'600	10'900
Bulgaria	70,500	22,700	18,100	28,200	9,100	7,200	7'100	400	6'200
Czech	355,400	114,500	88,200	142,200	45,800	35,300	10'600	1'100	9'500
Republic									
Denmark	436,400	140,700	51,300	174,500	56,300	20,500	5'300	1'200	5'700
Estonia	261,700	85,000	44,200					-	4'500
Finland	432,600	139,400	36,100	Swi	tzerla	and	200	2	3'500
France	438,600	141,200	87,700					-	9'900
Germany	430,300	138,800	83,900	500	€/kg	PM	25		10'900
Greece	338,600	109,100	47,700		Cing				5'800
Hungary	288,900	93,000	74,100						9'100
Ireland	537,200	173,400	56,200						5'400
Italy	397,400	128,400	72,300						8'700
Latvia	245,300	78,900	45,600						5'000
Lithuania	266,300	86,500	53,300						5'700
Luxembourg	877,100	282,400	125,000	350,800	112,900	50,000	12'700	2'400	10'300

Table 1 Air pollution cost factors in EUR/ton of pollutant (€2008 values)

Switzerland	498,700	160,500	82,400
Poland	248,900	79,900	74,700

What is PM2.5 - Mass [mg/m3] of what ? mix of unspecified substances – which is the toxic one ? what represents the engine emission ?


PM2.5 [µg/m³] identical Mass

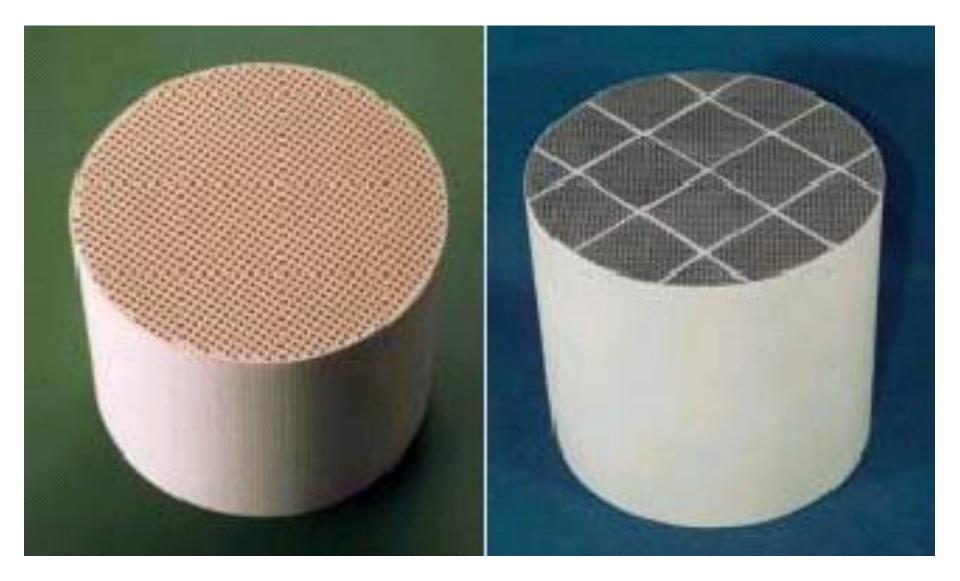
But these 3 situations can definitely not represent same air pollution = toxicity

Black Carbon Organic mass Nitrate Sulfate Ammonium Chloride

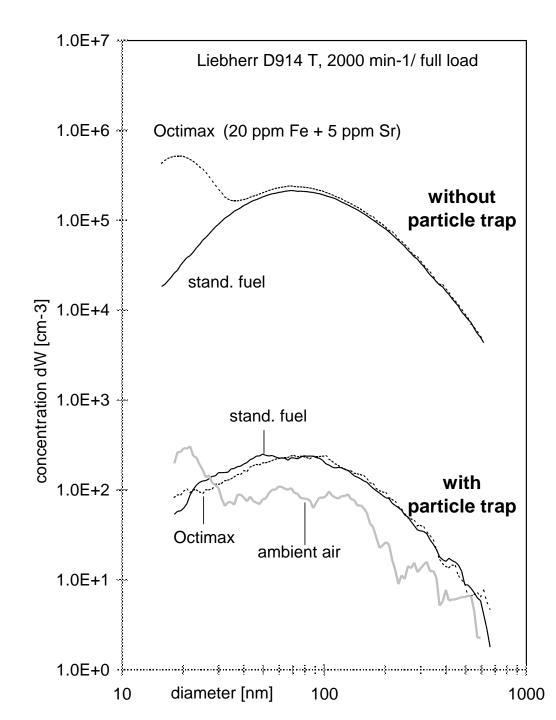
Health Effect for PNC/PM 2.5

Short Term Cardiovacular Mortality (CVD) comparing mass (PNC) to mass (PM2.5)

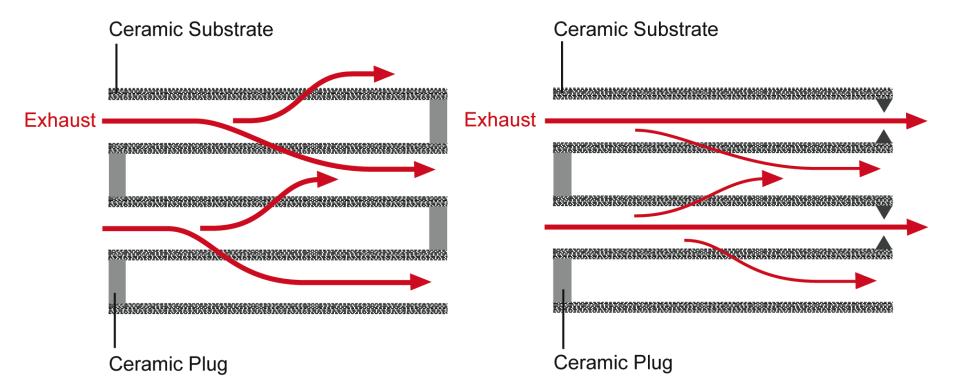
Study	City, Year	CVD -PNC per 10 µg/m3	CVD - PM 2.5 per 10 µg/m3
Atkinson	London 2010	6.8 %	0 - 0.5 %
Stolzel	Erfurt 2007	9.9 %	0 - 1.5 %
Breitner	Beijing 2011	36.5 %	NA
Branis	Prag 2010	34.1 %	0 - 0.4
Forastiere	Rom, 2006	8.4 %	0.1- 3.1 %
Kettunen	Helsinki 2012	52.7 %	2.1 - 23 %
Average		24.7 %	3.1 %


Assumption: Particles 70 nm, Density:1, mass 3.2×10^{-16} g/P / 10'000 P/cm3 = 3.2μ g/m3

Pollutant	PM ₂	₅ (exhaust)		PM10	(non-exhaust)		NOx	NMVOC	SO ₂
Region type	Metropolitan	Urban	Non-	Metropolitan	Urban	Non-			
			urban			urban			
Source	HEATCO	*UBA/	HEATCO	*UBA/	*UBA/	*UBA/	NEEDS	NEEDS	NEEDS
		HEATCO		HEATCO	HEATCO	HEATCO			
Country									
Austria	482,200	155,900	80,700	192,900	62,400	32,300	13'600	1'600	10'000
Belgium	483,400	156,000	104,400	193,400	62,400	41,700	8'700	2'600	10'900
Bulgaria	70,500	22,700	18,100	28,200	9,100	7,200	7'100	400	6'200
Czech	355,400	114,500	88,200	142,200	45,800	35,300	10'600	1'100	9'500
Republic									
Denmark	436,400	140,700	51,300	174,500	56,300	20,500	5'300	1'200	5'700
Estonia	261,700	85,000	44,200	101 200		13 300	01000	600	4'500
Finland	432,600	139,400	36,100	Swi	tzerla	and		600	3'500
France	438,600	141,200	87,700					1'400	9'900
Germany	430,300	138,800	83,900	120	0 _			1'400	10'900
Greece	338,600	109,100	47,700	120	U -			600	5'800
Hungary	288,900	93,000	74,100	250	0 €/k		ot	1'000	9'100
Ireland	537,200	173,400	56,200	230	UCA	y 00	UL	1'100	5'400
Italy	397,400	128,400	72,300					1'100	8'700
Latvia	245,300	78,900	45,600					700	5'000
Lithuania	266,300	86,500	53,300					800	5'700
Luxembourg	877,100	282,400	125,000	350,800	112,900	50,000	12'700	2'400	10'300


Table 1	Air pollution cost factors in EUR/ton of pollutant (€2008 values)
---------	---

Switzerland	498,700	160,500	82,400
Poland	248,900	79,900	74,700


Reliable Solutions are available in > 100 millions are today in use

Particle Elimination with CORNING-Filter and FBC

Are Alternatives available ? Full Flow versus Partial Flow Filters ("closed" versus "open")

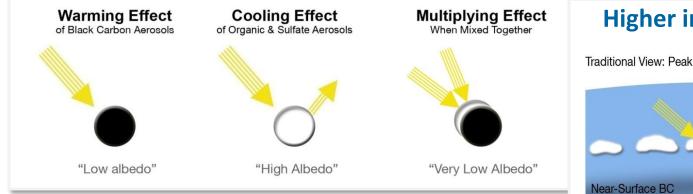
Full Flow Filter and Partial Flow "Filter" comp. by <u>Cost-Effectiveness</u> €/kg Soot

	HDV+FFF	LDV+PFF
PM-Emission EURO III/3	0.1 g/kWh	0.05 g/km
Mileage	1000 hrs/y	10'000 km/y
Average Performance [kW]	100	10
PM Emission [kg/year]	10	0.5
Overall vehicle life [year]	15	10
Emission [kg/vehicle life]	150	5
Filter type	wall flow	partial flow
Filter efficiency [%]	99.9	20
Filter Cost [€]	8'000	750
Total prevented soot [kg/life]	150	1.0
Cost-Effectiveness [€/kg soot]	53.3 ¹⁾	750 ²⁾

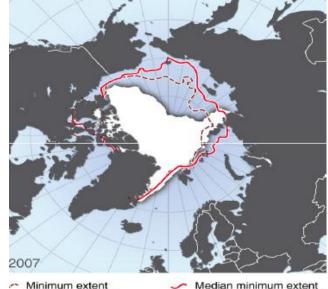
1) USA-EPA: 40-50 \$/kg for offroad applications

2) UBA Wien (2009): Offroad 50-90 €/kg; LKW 90 €/kg; PKW offene Filter 200-643 €/kg

Diesel: Health Benefit for two typical retrofit


DPF-Applications: *HDV+FFF versus LDV+PFF*

	HDV+FFF	LDV+PFF
PM-Emission (Euro III / 3)	0.1 g/kWh	0.05 g/km
Mileage	1000 hrs/yr	10'000 km/yr
Average Performance [kW]	100	10
PM Emission [kg/year]	10	0.5
Overall vehicle life [year]	15	10
Emission [kg/vehicle life]	150	5
Filter type	wall flow	partial flow
Filter efficiency [%]	99.9	20
Health Cost [€/kg Soot]	1'200	1'200
Total prevented soot [kg/life]	150	1.0
Health Benefit [€]	180'000	1'200


Health Benefit of DPF is about the investment for a vehicle

and we have a co-benefit FOR GLOBAL SURVIVAL

since DPF can contribute to lower global warming by eliminating Black Carbon Particles

BC on snow decreases albedo, turning to water.. further lowering albedo

 Minimum extent of ice cover 2005

 Median minimum extent of ice cover (1979-2000)

Journal of Geophysics Res.2007

Source: UNEP/GRID Arendal & EPA

Science Daily, United Nations Environment Program Nov 2008

Absorbed reflection

Global Warming by BC-Particles

Higher in atmosphere

Traditional View: Peak Black Carbon Close to Surface

Peak BC @ 2Km

Jacobson 2002

360,000-840,000 : 1

Is the atmospheric warming effect

by 1 kg of BC particles compared to 1 kg of CO2

120,000-280,000:1 for BC+OC to that of CO2

→ However different residence times must be respected: 20 years for CO2 and 1-2 month for BC which brings equivalence to about 1:2000

Table 1. Global Warming Potentials (GWP) drawn from the IPCC 4th Assessment Report

	GWP20	GWP100	GWP500
Black carbon	1600	460	140
Methane	72	25	7.6
Nitrous oxide	289	298	153
Sulfur oxides	-140	-40	-12
Organic carbon	-240	-69	-21
Carbon dioxide	1	1	1

Note: The methodology used for black carbon was also used for organic carbon and sulfur oxides. Values for black carbon, organic carbon and sulfur oxides were not published by the IPCC and are not official estimates.

Which €-Benefit associates the Society with Global Warming Reduction ?

Value of CO₂

- Trading CO₂ -Emissions (myclimate, atmosfair) costs 37-185 CHF per ton CO₂
- CO₂ –Tax today is 24-45 CHF per ton CO₂
- → Let's say: Value of CO_2 –Reduction is 50 € per ton

BC / CO₂-GWP-Equivalent (BC = ultrafine black carbon particles)

 GWP of BC is 1'600 x higher than GWP of CO₂ for the same mass (kg)

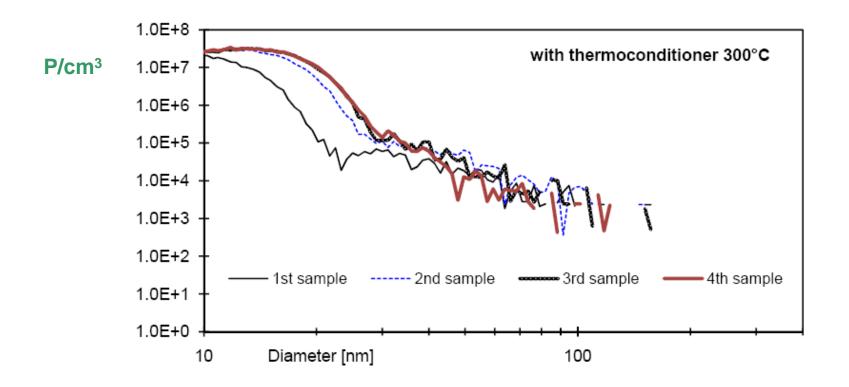
→ Resulting Value of 1 kg BC-Reduction is 80 € (80'000 €/ton)

GW-Benefit [€] for the Society 2 typical Retrofit Applications

	HDV+FFF	LDV+PFF
PM-Emission (Euro III / 3)	0.1 g/kWh	0.05 g/km
Mileage	1000 hrs/y	10'000 km/y
Average Performance [kW]	100	10
PM Emission [kg/year]	10	0.5
Overall vehicle life [year]	15	10
Emission [kg/vehicle life]	150	5
Filter type	wall flow	partial flow
Filter efficiency [%]	99.9	20
BC GW benefit [€/kg soot]	80	80
Total prevented soot [kg/life]	150	1.0
Global Warming Benefit [EUR]	12'000	80

3 Petrol Engines tested with GPF

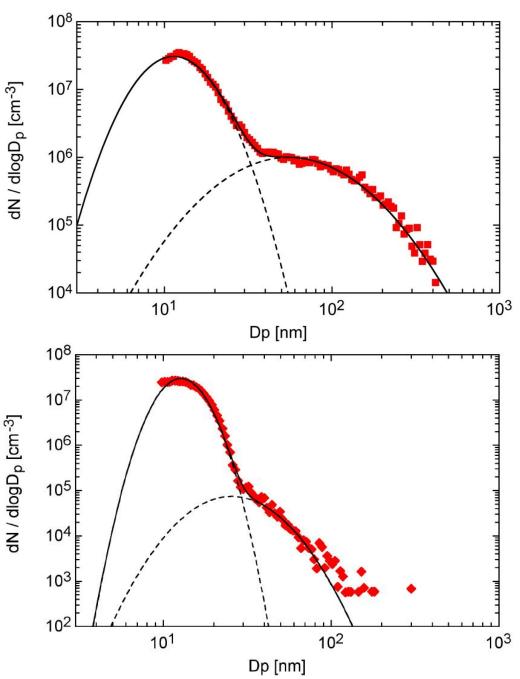
Fahrzeug	Aprilia Leonardo 125	Audi A3 2.0 TFSI	Renault 18 TX
Baujahr	2004	2007	1985
Motor	Viertaktmotor, Wassergekühlt	Viertaktmotor, Wassergekühlt	Viertaktmotor, Wassergekühlt
Hubraum	125 ccm	1984 ccm	2164 ccm
Zylinder	1	4	4
Gemischaufbereitun g	Vergaser	Direkteinspritzung	Saugrohreinspritzung
Kraftstoff	Benzin bleifrei	Benzin bleifrei	Benzin bleifrei



Health Benefit of Diesel LDV versus Gasoline based on <u>soot particle mass</u> PM

	Diesel+FFF	Gasoline+FFF
PM-Emission (Euro 3 or in use)	100 mg/km	10 mg/km
Mileage per anno	10'000 km pa	10'000 km pa
Average Performance [kW]	10	10
PM Emission [kg/year]	1.0	0.1
Overall vehicle life [year]	10	10
Emission [kg/vehicle life]	10	1
Filter type	wall flow	wall flow
Filter efficiency [%]	99.9	99.9
Health Cost [€/kg soot]	1'200	1'200
Total prevented soot [kg/life]	10	1.0
Health Benefit [€]	12'000	1'200

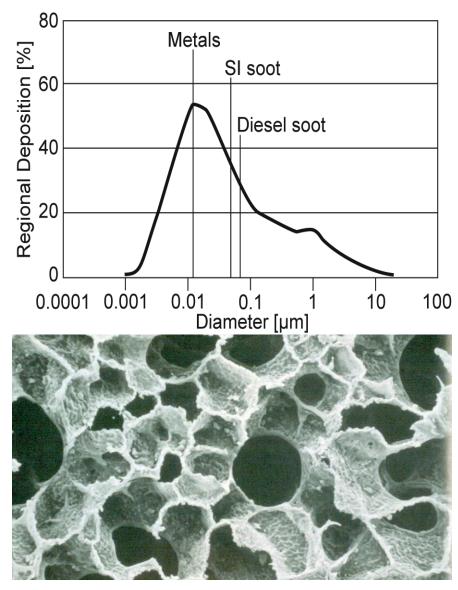
Honda 450 Motorbike (10'000 km) Size Distribution at Idle (upper) and 50 km/h (lower) as many as Diesel but smaller


Particle Emission of ICE

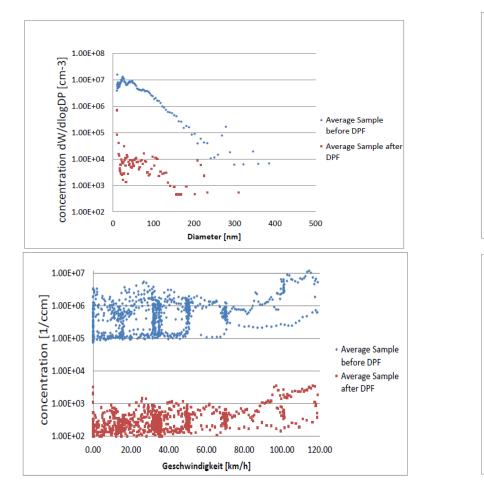
Diesel

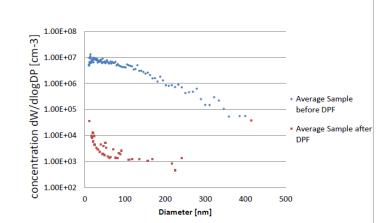
Sootpeak: 80 nm; 10⁶ Ashpeak: 10 nm; 10⁷

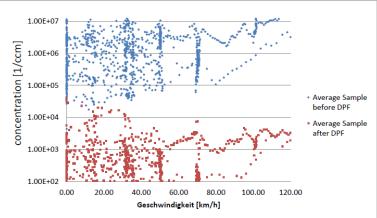
Petrol Sootpeak: 40 nm; 10⁵ Ashpeak: 10 nm; 10⁷


Soot and Ash Peaks

Why is particle size decisive for health risk considerations


Ablagerungen von Feinpartikeln im menschlichen Atemtrakt


Angriffsorte	Luftschadstoffe
Nasen- Rachenraum	5-10 µm
Luftröhre	3-5 µm
Bronchien	2-3 µm
Bronchiolen	1-2 µm
Alveolen (Lungen- bläschen)	0.1-1 µm



Ultrathin alveoli tissue permits penetration of gases and UFP into blood vessels

PN-Emission Petrol and GPF-Effects Renault 18 PI (left) and Audi A3 DI (right) with GPF (red) and without GPF (blue)

Health Benefit of Diesel versus Gasoline based on Particle Number PN

	Diesel+FFF	Gasoline+FFF
PN-Emission	0.1g →10 ¹⁴ P/km	0.01g→10 ¹⁴ P/km
Mileage per year	10'000 km pa	10'000 km pa
Particle size	100 nm	50 nm
PM Emission [P/year]	10 ¹⁸	10 ¹⁸
Overall vehicle life [year]	10	10
Emission [P/vehicle life]	10 ¹⁹	10 ¹⁹
Filter type	wall flow	wall flow
Filter efficiency [%]	99.9	99.9
Health Cost [€/kg = /10 ¹⁸ P]	1'200	1'600
Total prevented soot [kg/life]	10 ¹⁹ @100 nm	10 ¹⁹ @ 50 nm
Health Benefit [€]	12'000	16'000

Mass of a 100 nm cube with unit density is 1 Femtogramm = 10^{-15} g

Health Benefit / Cost

- HD Diesel Euro3 Retrofit FFF: 180'000 / 8000 = 22.5
- HD-Diesel Euro5 OEM FFF: 36'000 / 4000 = 9
- LD Diesel Euro3 OEM FFF: 12'000 / 500 = 24
- LD Petrol based on PM 1'200 / 100 = 12 based on PN 16'000/ 100 = 160

Cost of HD DPF Retrofit – PFF Retrofit – DPF OEM – PFF OEM 8'000.- 5000.- 4000.- 3000.-Cost of LDV DPF: 500.-Cost fo LDV GPF: 100.-

Health Benefit / Cost even for Chinese assumptions 4:1

Beijing 6/VI standards are extremely cost-effective. A conservative estimate of the benefits of the Beijing 6/VI standards indicates that, in 2040, they would outweigh the costs by a factor of 4 to 1, with most of the benefit coming from better public health.

The ICCT report is at http://theicct.org/sites/default/files/publications/Beijing_Emission_Control_Programs_201511%20.pdf.

Summary

Overall Monetary Assessment of PM-Emission-Reduction by BAT Particle Filters has a double benefit for the Society reducing health risk and global warming. Benefit for the Society is > **10 x higher** than actual Filter Cost

Conclusion

Swiss Council 2002:

"Introduction of Particle Filters is a large benefit for public health and an economic requirement"