



### Handheld- and Small Machines Network HaSMaNet

- contribution to the occupational health protection

J. Czerwinski, A. Mayer, V. Hensel / VERT D. Engelmann, P. Comte / AFHB

11th VERT Forum, EMPA/Web, March 25th 2021

### <u>Contents</u>



- General Situation
- Handheld Machines (HaMa) 2-S engines activities, achievements, conclusions
- HaSMaNet Web-Meeting Dec'20 electrification, market surveillance, legislation
- Small Machines (S Ma) 4-S engines
- Future Efforts
- Conclusions





### **General Situation**





### NRMM Directive is unsufficient for NRS →Meeting VERT with EU-Commission 13.June 2017



#### **Limit Values for handheld Petrol NRSh**

| Emissions<br>stufe | Motorenunt<br>erklasse | Leistung<br>sbereich | Art der<br>Motorzü<br>ndung | CO    | HC + NO <sub>x</sub> |
|--------------------|------------------------|----------------------|-----------------------------|-------|----------------------|
|                    |                        | kW                   |                             | g/kWh | g/kWh                |
| Stufe V            | NRSh-v-1a              | 0~12-10              | E7                          | 805   | 50                   |
| Stufe V            | NRSh-v-1b              | 0~1~19               | 1.77                        | 603   | 72                   |

#### PM/PN and PAH not even mentioned

Meanwhile we are used to milligramms/kWh but here we are in the order of magnitude of (Kilo)gramms

#### NRMM-Limits – NRE → PN introduced !?

11 - E

| Emissions<br>stufe | Motoren<br>unterkla<br>sse | Leistungsbe<br>reich                                                                                                                    | Art der<br>Motorzü<br>ndung | CO    | нс                         | NOx                   | Partike<br>Imasse  | PZ                 | A    |
|--------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|----------------------------|-----------------------|--------------------|--------------------|------|
|                    |                            | kW                                                                                                                                      |                             | g/kWh | g/kWh                      | g/kWh                 | g/kWh              | #/kWh              |      |
| Stufe V            | NRE-v-1<br>NRE-c-1         | 0 <p<8< td=""><td>SZ</td><td>8,00</td><td>(HC+N</td><td>O<sub>x</sub>≤7,50)</td><td>0,40<sup>1)</sup></td><td></td><td>1,10</td></p<8<> | SZ                          | 8,00  | (HC+N                      | O <sub>x</sub> ≤7,50) | 0,40 <sup>1)</sup> |                    | 1,10 |
| Stufe V            | NRE-v-2<br>NRE-c-2         | 8≤ <b>P</b> <19                                                                                                                         | SZ                          | 6,60  | (HC+NO <sub>x</sub> ≤7,50) |                       | 0,40               |                    | 1,10 |
| Stufe V            | NRE-v-3<br>NRE-c-3         | <b>19≤₽&lt;3</b> 7                                                                                                                      | SZ                          | 5,00  | (HC+N                      | O <u>x</u> ≤4,70)     | 0,015              | 1x10 <sup>12</sup> | 1,10 |
| Stufe V            | NRE-v-4<br>NRE-c-4         | 37≤₽<56                                                                                                                                 | SZ                          | 5,00  | (HC+NO <sub>x</sub> ≤4,70) |                       | 0,015              | 1x10 <sup>12</sup> | 1,10 |
| Stufe V            | NRE-v-5<br>NRE-c-5         | 56≤P<130                                                                                                                                | alle                        | 5,00  | 0,19                       | 0,40                  | 0,015              | 1x10 <sup>12</sup> | 1,10 |
| Stufe V            | NRE-v-6<br>NRE-c-6         | 130≤₽≤560                                                                                                                               | alle                        | 3,50  | 0,19                       | 0,40                  | 0,015              | 1x10 <sup>12</sup> | 1,10 |
| Stufe V            | NRE-v-7<br>NRE-c-7         | ₽>560                                                                                                                                   | alle                        | 3,50  | 0,19                       | 3,50                  | 0.045              | -                  | 6,00 |



**Bern University of Applied Sciences** Biel-Bienne Switzerland AFHB | IC-Engines and Exhaust Gas Control





## Handheld Machines (HaMa) – 2-S Engines







### HaMaNet



Organized by AFHB Oct. 2011 until May 2018, 9 Meetings

<u>Ha</u>nheld <u>Ma</u>chines <u>Net</u>work

JRC/VELA; FOEN; UBA; Swiss Lubes; AECC; MOTOREX; Aspen; Emak; STIHL; MOT; Dolmar, Husquarna, KIT/MOT, Lubrizol, DUH, ENI, Heraeus, VSS, VSI, TTM, AFHB



**Bern University of Applied Sciences** Biel-Bienne Switzerland AFHB | IC-Engines and Exhaust Gas Control





### Research and screening test 2018 programs inspired been AMAN AND MAY 2016 • STIHL • SWRI / Lubrizol

### **Technical conclusions (2-S)**



- condensation effects, HC-matrix  $\rightarrow$  important for PN
- influence of lube oil ash-content → moderate
- ox. cat.  $\rightarrow$  significant reduction of PM & PN
- BAT  $\rightarrow$  lube oil + Alkylate fuel + ox. cat.







## HaSMaNet Web-Meeting, Dec.'20



#### Most important statements

- STIHL: powertrain electrification progress approx. 25%/a, in hobbysector almost exclusively, partly also in the professional sector (with the requirements of higher power density and longer operation time the ICE-propulsion is needed)
- DUH: performed three big market screenings of handheld machines 2013, 2015 and 2017. High rate (mostly above 50%) of exeedances of legal limit values were registered. A consequent, coordinated and centralized market surveillance with well established legal procedures and penalties is necessary.
- AFHB: shows potentials of lowering CO and HC of a small 4-S engine with oxidation catalyst and puls-air-valve.
- All: further legal steps for improving the occupational protection are necessary lowering of limit values, provisions for CoP, ISC, PTI.



### Small Machines (SMa) – 4-S Engines



### Some examples











vibration pounder small dumper plate compactor

#### Simple SI 4S-engines

### Yoke-mower

Simple SI 4S-engine





#### Lawn-mower



### **Technical conclusions (4-S)**



- Excursion on internet: there are small engines both SI and Diesel; no information about exhaust aftertreatment (EAT)
- For the manufacturers no necessities for BAT because of not sufficient legal stimulation (most of the manufacturers have the actual EAT-technology for bigger engines in house)
- With the actual EAT considerable reduction of emissions similarly, like in the on-road sector, are possible. For SI – Ox.Cat.+sec.air, 3WC, or 4WC; for Diesel – Ox.Cat, Ox.Cat.+DPF, or Ox.Cat.+DPF+deNOx



## Conclusions for VERT



# VERT extends the work for emission reduction to all engines < 56 kW



Introduce Alkylate Fuel worldwide to eliminate cancer and accident risks

→ introduce Oxidation Catalyst with Sec.Air, as the first step to oxidize CO and HC

- $\rightarrow$  demonstrate feasibility of EAC for < 56 kW
- Standardization for Alkylat Fuels and Lube Oils
- → increase awareness of lube oil toxicity
- → increase awareness for PTI for small engines
- → Inspection and Maintenance (I&M) rules

With common efforts: legislation, testing, market control & occupational protection – significant improvements are possible.

Station fit with a fit of the fit of the