Wood Burning Appliances

Paving the Way for a Next-Generation (Particulate Matter) Emission Measurement Method

Alejandro Keller 22 March 2024

n

Overview of the Consortium

- European consortium led by Swiss institutes (Oekozentrum & FHNW)
- Goal: Modernize emission measurements for wood burning appliances
- 49 European experts, 29 Institutions:
 Universities, Research Centers, Notified Bodies (certified test facilities),
 Manufacturers, Environmental Agencies
- 3 Workshops held in $2023 \rightarrow$ Position Paper
- Next Step: Start a European project to define and validate a NGEMM

Supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

 $\mathbf{n}|\mathcal{U}$

member of swissuniversities

Biomass Combustion with Future

n

member of swissuniversities

Other Requirements for a NGEMM

What about PMP?

n

W

Number Concentration: Theoretical Background

- Number concentration in wood burning is not a good parameter for emissions measurement (coagulation*)
- No relation with the quality of the combustion
 - Even clean oil boilers (mass emissions M≈1 mg/m³_{STP} @ 3% O₂) have number concentrations N~10⁷ #/cc.
- Not an indicator for health and climate impact (more in other slides)
- Does not promote the use of BAT:
 - Opens a door to certify high emission stoves
 - Promote the placement of filters as close as possible to the end of the stack → No integrated solutions

* Examples for room temperature. Coagulation faster at real flu gas temperatures. Based on log-normal distributions. CMD: Count Mean Diameter; GSD: Geometrical Standard Deviation

Number Concentration: Theoretical Background

Number Concentration: Test Bench Experiments

Source: Juho Louhisalmi @ 2nd International Real-LIFE Emission Workshop on Small-Scale Combustion

SIMO Database

University of Eastern Finland

- 352 combustion cycles
- 50 different appliances
 - Sauna stoves, wood stoves, masonry heaters, and cooking stoves
 - Mainly new and modern appliances

Wood Burning as a Pollution Source

Metrics based on mass, surface or number fail to capture the diversity of emissions.

Graphic adapted from: Lamberg et al. / Atm. Env. 45 (2011) 7635-7643

Focus on Carbonaceous Particles (Wood Combustion)

- Health relevant
- Contribute to climate change ^a
 - Effect mostly from elemental carbon (EC; soot)
 - Organic carbon (OC) contributes 14%
- Source apportionment (Switzerland)
 - OC concentrations at least as high as EC^b
 - Winter smog episodes: OC ten times more than EC^c
 - Secondary organic aerosol: ~ same concentration as primary organics^d

^a Kirchstetter, 2012: 10.5194/acp-12-6067-2012; ^b Gianini, 2012: 10.1016/j.atmosenv.2012.02.036 ^c Zotter, 2014: 10.5194/acp-14-13551-2014; ^d Daellenbach, 2017: 10.5194/acp-17-13265-2017

"Condensables"

n

- Somewhat related to organic aerosol in the atmosphere (after cooling/dilution)
 May be related to secondary organic aerosol potential
- ☑ No universal definition
 - Definition via measurement method

n

Secondary Organic Aerosols

Dekati[®] Oxidation Flow Reactor DOFR™

Secondary aerosol formation is relevant for health and environmental impacts

☑ Lack of experience

- Has never been used for, e.g., type approval testing.
- In the past very expensive

Summary

Current Standard (Gravimetric PM + Organics through FID)	X	X
Number Concentration	X	X
Carbonaceous Particles	\checkmark	\checkmark
Condensables	\checkmark	?
Secondary Organic Aerosol	\checkmark	?

Thank you for your attention

n

member of swissuniversities

Total Carbon and Oxidation Reactors

- The TCA-8 from Aerosol d.o.o. measures total carbon semi-online.
- Two sampling heads to avoid measurement downtime
- Limit of detection 0.4 µg-C sampled on the filter

Dekati® Oxidation Flow Reactor DOFR™

Based on the limit of detection, our systems will be able to detect Total Carbon concentrations as low as TC=35 μ g-C/m³_{STP} *

* Assuming sampling duration of 30 minutes, 1:10 dilution and 1 lpm sampling flow

- FHNW development for semi-online Total Carbon measurements (FATCAT)
- Limit of detection 0.1 µg-C sampled on the filter
- Has already been tested with wood burning emissions

FHNW, Organic Coating Unit (OCU)

Keller et al. 2022 (OCU): <u>https://doi.org/10.1080/02786826.2022.2110448</u> Keller et al. 2023 (FATCAT): <u>https://doi.org/10.5194/ar-2023-11</u>