

Low / No carbon fuels - impact on particulate emissions of HD engines

14th VERT Forum, T. Philipp

Liebherr Machines Bulle SA

Agenda

- **1** Introduction
- 2 Use of low or no carbon fuels
- **3** Impact of different fuels
- 4 Conclusion and outlook

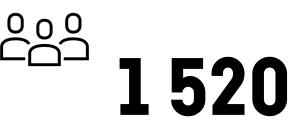
Factsheet: Liebherr Machines Bulle SA

Foundation

Components Division:

Liebherr-Component Technologies AG, Bulle (Switzerland) A specialist in heavy duty combustion engines and hydraulics

Product segments

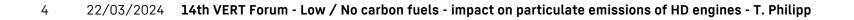

Hydraulic pumps and motors –

industry / aviation

Combustion engines

Fuel injection system development

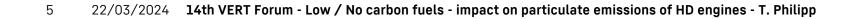
Employees



Mio. CHF turnover

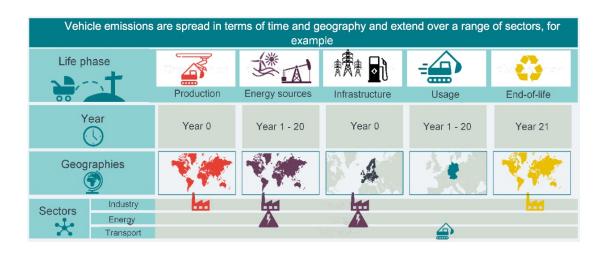
Total area: 188 100 m²

Built-up area : 83 696 m²


Impact of Liebherr applications on global greenhouse gas emissions

In general, construction machinery plays 2 important roles for the global transformation to a decarbonised economy

- Liebherr applications and components are enabling the supply with raw material and the expansion of the infrastructure for the energy transition
- Today, many applications are based on a fossil fuel-based powertrain, high power request and continuous operation, which makes them remarkable CO₂-Emitters

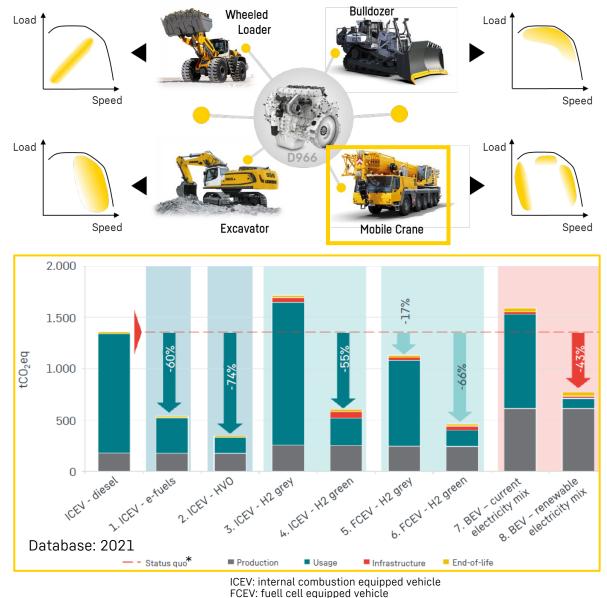


Impact analysis for Liebherr applications

Liebherr started a program to identify the optimum powertrain technology regarding greenhouse gas emissions, by using a holistic life cycle analysis (LCA) approach, including:

- Production of the application & Energy sources
- Infrastructure for the energy supply
- Usage of the application
- Scrapping or recycling of raw materials

Looking only on a single phase of the whole lifecycle can lead to a conclusion which finally will lead to higher overall emissions, only transferred to a different phase


Results of the lifecycle analysis (*)

The biggest part of the CO₂-equivalents is produced during **operation** of the machine

Reduction of greenhouse gas emissions is one additional requirement for future powertrain developments

Overall results are depending on the **usage of the application**

No **standardised solution** for all applications

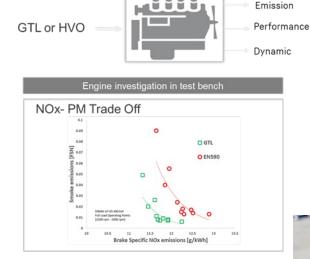
BEV: battery electric vehicle *Results based on current state-of-the Art

02 Use of low or no carbon fuels

Use of low/no carbon fuels Fuels/Technologies in focus at Liebherr

Liebherr Machines Bulle SA as manufacturer of internal combustion engines for construction and agricultural applications is looking on different pathways to lower greenhouse gas emissions

- **GTL/HVO:** based on EN15940
- **Dual Fuel:** Mix of Diesel fuel and H₂
- Hydrogen: no CO₂ by combustion
- **Ammonia:** no CO₂ by combustion partner in Campfire project



Use of low/no carbon fuels

Motivation – GTL / HVO (EN15940)

Can be used as Drop-in fuel with existing engine and aftertreatment technologies

Fuel analysis with LMB Engines (HVO)Investigation with synthetic fuel "HVO"
performed with LMB enginesCO2 emission reduction in "Tank to wheel"
scenario is ~ 4 %In Well to wheel scenario a potential of 80% -
90 % of CO2 emission reduction is expectedVolumetric fuel consumption is increased with

approximatively 4 %

Existing infrastructure can be used

7 Produced from

Produced from renewable raw materials

Liebherr OEMs uses HVO as "First fill" for its applications

Paraffinic Fuels EN15940 (HVO, GTL)

Use of low/no carbon fuels

Why Dual-Fuel Technology ?

Emergency operation with diesel mode is always possible

Ensuring the second life of vehicles in all markets without H₂ infrastructure

Flexibility in vehicle operation (vehicle can operate in two modes)

Ensuring the low emission vehicle "LEV: 50% CO₂ emissions ~ 350 g/kWh" norms

Tank volume for 100 % hydrogen operation is very challenging for integration (Limitation of H_2 operation in dedicated area recommended, e.g. Crane mode in cities)

Additional Engine performance (dynamic operation) using diesel boost is possible

Motivation Hydrogen

Carbon neutral technology thanks to low \mbox{CO}_2 emissions

Very low NOx emissions thanks to a special
design of the combustion chamber, optimization of air system and dedicated EATS

Comparable interfaces (thermal & mechanical) to diesel engine

Good **engine efficiency** all over the engine operating conditions

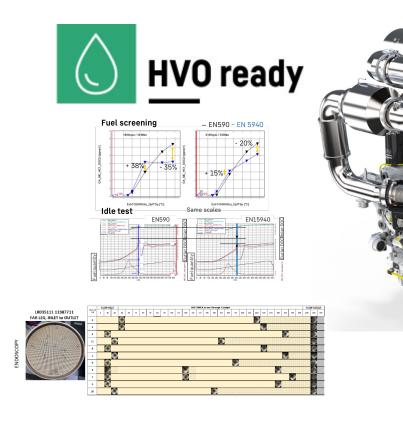
03 Impact of different fuels

Impact of different fuels

GTL / HVO – Investigation @ Liebherr

EN15940 validation performed.

The analysis focussed on:


- DOC behaviour
- 1'000hrs endurance test

DOC behaviour:

 Identified different behaviour (lower peak exotherm temperature, HC slip) without functional impact on the regeneration capability

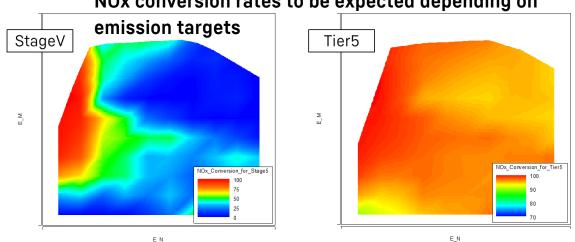
1'000hrs endurance test:

- Ash load rate ~30% lower than expected
- lower soot load

- No impact on the EATS performance was found by using EN15940 fuels
- Stage V SCRFilter fulfil requirement for soot filtration
- Stage V engines certified for use with EN15940 fuels

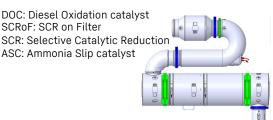
LIEBHERR

Impact of different fuels Hydrogen – Situation

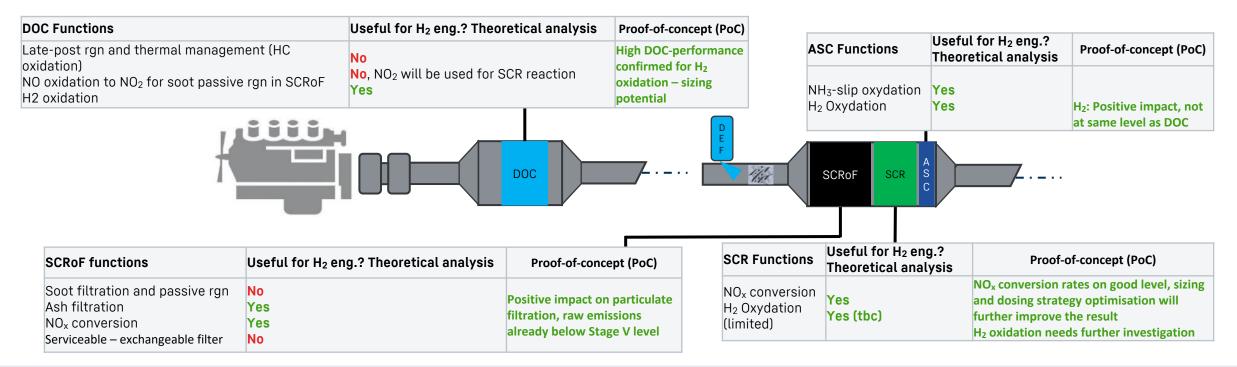

Currently, no dedicated emission regulation for H₂ engines: missing method for calculating emissions with zero carbon fuels. In EU, expected amendment of ECE R.96 regulation end of 2024

With today's engine only technologies, the achievement of Stage V emission legislation is not assured

By using an EATS (e.g. Stage V SCRFilter system) the limits of Stage V can be reached.


To reach further emission legislation, improvements on the EATS are expected.

	Stage V / T4f	Tier 5 proposal
NO _x	0.4 g/kWh	0.04 g/kWh
N ₂ O	n/a	0.15 g/kWh capping
THC	0.019 g/kWh	0.019 g/kWh
PM	0.015 g/kWh	0.005 g/kWh
PN	1x10 ¹² (PN23) EU	1x10 ¹² (PN23) 6x10 ¹¹ (PN10) ?
Validation	NTE	NTE? Percentiles/low load cycles?



NOx conversion rates to be expected depending on

Hydrogen – theoretical analysis of current system vs. PoC

Using the standard Stage V EATS in the H_2 "environment", a careful assessment is required to anticipate / highlight potential risks and to define the test targets.

Achievement of the Stage V emission targets is feasible with the existing system layout. Impact on durability is under evaluation. To meet more stringent limits, further improvements are required.

04 Conclusion and outlook

Conclusion and Outlook

The internal combustion engine shows further emission reduction potential by exchanging standard fuels by alternative fuels (EN15940, H₂)

- focussing on partial analysis can lead to a wrong interpretation of the best technical solution
- The use profile of the application needs to be considered to choose the best powertrain concept
- Dual fuel applications can be considered as transfer technologies with a faster market availability

A positive impact on particulate matter emission is already found with EN15940 fuels, and can be further reduced using no carbon fuels

- Particulate emissions are not only related to the carbon content in the fuel, but are also impacted by other sources (oil additives, engine wear, DEF dosing)
- The use of a particulate filters shows a positive impact, even on "No carbon" fuels

Uncertainty about applicable limits and homologation constraints the introduction of emission reduction technologies

– In addition to the emission legislation, EU threshold for CO₂ neutrality under discussion

Thank you.

LIEBHERR