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Hydrogen is a great sustainable fuel for IC engine

v’ Carbon-free H 5 E,_ N

v" Wide flammability limits N2 %

v High burning velocity (207 cm/s vs ~35 for gasoline) ? 0//“'
v’ Contributes to better antiknock performance B, ‘ o 5

-0-Hydrogen -o-Methane

----- Hydrogen --<--:CNG = = =20HCNG :
- +—- Gasoline —— Diesel .

Wide-spread opinion:
Carbon-free hydrogen combustion in

IC engine should lead to performance
improvement and emissions reduction
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The challenges of hydrogen as an ICE fuel Hz

v No fueling infrastructure available Fuel + Water + Exhaust Energy[SllESy H,-rich Reformate
*  Otherwise would have
been wasted
v" Onboard storage is problematic ' l
Low Pollutants
.o E h t i
To remind: M,,, = 2.016 g/mol, Emission (o Exhaust G Highly
Efficient
Boiling T =-253C Engine

Exhaust waste heat is used to produce hydrogen onboard

Can be overcome through Because port reformate injection
onboard on-demand leads to abnormal combustion and

hyd rogen production power loss, we suggested employing
the direct injection




Onboard on-demand hydrogen production from a sustainable fuel
High-Pressure ThermoChemical Recuperation

v'Primary renewable low-carbon

intensity liquid fuel (e-fuel) .
heine 7 Exhaust Ga > 8
v'Waste heat recovery process ,
. Reformer
. L Air| 5
v'Direct reformate injection * . 4 3
, % RN
v'Hydrogen combustion Separation Tank 6 Heat Exchanger
and Reformate \ 1 2
.. Reservoi

v'Ultra-low pollutant emissions eror B

Fuel Tank Thermo-Chemical
Recuperation (TCR)

Tartakovsky L., Sheintuch M., Veinblat M., Thawko A.,
International Patent Application No. PCT/IB2020/056382, 2021

Methanol Steam Reforming (MSR)
CH;0H+H,0 - 3H,+CO, AH=50 kJ/mol

Low reforming temperatures- 250-300 C




High-Pressure ThermoChemical Recuperation
Performance

Poran, Thawko et al., Int. J Hydrogen Energy, 2018
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> 19%-30% relative increase in indicated efficiency
» Areduction in NO,, CO and HC emissions by up to
97, 91 and 96, respectively




Fuel type effect on gaseous pollutant emission — DI engine

> COis near-zero for MSR and hydrogen » CO, for MSR - from the injected reformate » NO, is near-zero for MSR due to CO,
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Fuel type effect on DI engine performance

HP-TCR system
» HP-TCR system efficiency is higher than . /

for the pure hydrogen * - T T
» Ultra-low NO, emission for the reformate 0
due to CO, presence O o— o o

w
(o]

» Ultra-low CO emission for both the
reformate and hydrogen
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Total particle concentration comparison

16 Thawko et al., Int. J Hydrogen Energy, 2019 , o x16 Thawko et al., Energy Conversion and Management, 2022
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This result contradicts the previously published data and a straightforward intuition




Particle size distribution — different oils

» Higher PN concentration for all particle size with the reformate
PM were collected and characterized- lubricant additives were found
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Particle formation- Direct vs Port Fuel Injection

120°C

EEPS
Single cylinder, Petter AD1 based 0]
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Particle formation - ignition timing effect

Reformate fuel
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Underexpanded gaseous jet flow field

» Fundamental investigation at ICE typical conditions

> M Parabolic
» Study of the transient underexpanded gaseous jet h [ D
» Detailed flow field characteristics RN [n
» Method:

» Schlieren & PIV technique for the near- and far-field *°
characterization, respectively

Double-acting _ Seeding
piston A
P Camera
[P i . .
P . Thawko et al., Physics of Fluid, 2021
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Flow field characterization- Free flow jet

Axial
velocity

Radial
velocity

Streamlmes

(o -10
.

Nozzle

Air entrainment

encouraged by the

transient underexpanded =
jet
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Flow field characterization- Impinging jet

» Two rolled-up vortex regions with large- Vorticity %+ Sl'vif””ti
. . . il | streng
scale motion are formed in the wall jet " i3
. 3 o Ty ‘ Ve
region 2! ¢ & | Y-
$ 20 2 !
» The lubricant vapor near cylinder walls ’ ' \ _
entrained into the jet in the free-jet region ol @ " fa ) W X o
and participates in the combustion R SR
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Interaction of a gaseous impinging jet with a heated
lubricated surface

Several experiments were preformed via Shadowgraph optical imaging Z-type configuration

» Perpendicular impinging jets were traced along the free, piston and
liner jet regimes for further understanding of the entrainment mechanism

» The jets were injected onto heated piston and lubricated liner
like surfaces to clarify the lubricant vapor entrainment phenomena
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Holtzer & Tartakovsky, SAE Technical Paper 2023-01-0308, 2023




Main lubricant entrainment mechanism

Holtzer & Tartakovsky, SAE Technical Paper 2023-01-0308, 2023
» Recirculation — entrainment
of the lubricant vapor in the
free-jet region

Sweeping — entrainment of
the lubricant vapor along the
liner by the climbing roll-up

Climbing Redl-up




Particle formation mechanism in non-premixed H, combustion

Hydrogen low
quenching
distance

Rogers et al. (2015) R

Both for DI&PFI

Excessive
lubricant
evaporation

Lubricant

entrainment into
combustion

chamber bulk

Particle
formation
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Non-premixed combustion of gaseous fuel - fuel type effect on

particle emission

» The fuel carbon content is the
dominant influencing factor affecting
particle formation at low loads

> The lubricant becomes the dominant
particle source with hydrogen-based
fuel combustion

» Reformate with the highest injection
duration results in the highest particle
formation
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Summary

> Excessive particle formation was discovered with reformate/hydrogen
compared to hydrocarbon fuels

> Reformate/hydrogen direct injection results in higher particle formation
compared to port fuel injection

> Particle formation mechanism in non-remixed hydrogen combustion was
described

> Sweeping is the main lubricant vapor entrainment mechanism into the
combustion chamber bulk

> Longer injection duration results in a higher particle formation
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