9. VERT Focus 16.3.2018 Dübendorf

VERT Holistic Approach to characterize and eliminate toxic aerosols emitted by combustion engines a challenge across disciplines

A.Mayer TTM, VERT

Start with NEAT 1993 Clean Air for Tunneling Workers

Die SUVA entwickelt im Projekt VERT Lösungen zur Abgasreinigung von Baumaschinenmotoren

Urseren-Garvera-Zone Gotthardmassiv Forazone Penninische Gneiszone

Tunneling needs Diesels

Rudolf DIESEL 1893 first patent – first engine 1897 (26.2 % !)

By far best efficiency, very robust and powerful engine

- 53 % large marine engines
- 45 % HDV (50 % in reach)
- 35 % LDV
- 42 % steam turbine
- 36 % gas turbine

However, 2 problems: Soot and NOx

- → Soot = Toxic air contaminant nº 1
- \rightarrow Soot = global warming substance nº 2

Priority for PM Elimination based on Occupational Health Limit Values

		Gas	Aerosols			
mg/Nm ³	CO	NO	NO_2	SO_2	(PM)	H_2SO_4
					\bigcirc	
Emissions	1000	2700	300	100	250	25
Limit Values						
 Switzerland 	33	30	6	5	0.1	1
Germany					0.1	
• MSHA 2007					0.16	
Required Dilution	> 28	> 90	>50	> 20	2500	> 25
Actual Dilution 1:40					\rightarrow	
4 m3/kWmin required					Filter 98%	

What is PM - Mass [mg/m3] of what ? mix of unspecified substances – which is the toxic one ?

Public Health Science 1993 – 2018 ... «Total mass of airborne particulate matter is the correct parameter for health impact»

Is this true? -- dubito ergo sum

Black Carbon Organic mass Nitrate Sulfate Ammonium Chloride

far too complex

need science for characteriszation

" .. esto importa poco a nuestro cuento; basta que no se salga un punto de la verdad "

Miguel de Cervantes El ingenioso hidalgo

Far too complex

let's use **Equivalent Mass** have we lost anything by this transformation ?

".. esto importa poco a nuestro cuento; basta que no se salga un punto de la verdad " The overall PM-Mass Definition for toxic aerosols was a misleading concept from beginning – we had to move away in 8 steps

- → by multiparametric DPF Efficiency Definition
- \rightarrow by Development of new PN Instruments
- \rightarrow by Secondary Emission
- \rightarrow by expanding ETH-Nanoparticle Conference
- \rightarrow by Triple Cell Research by Aerosol Eposure
- \rightarrow by HEQ the Health Equivalent Model
- \rightarrow by Metal Toxicity Research
- \rightarrow by Petrol Engine Emissions

away from «frozen» public health and type approval priciples and Europe followed

If mass is wrong, what is wright to make a DPF BAT ?

- → So from 1996 we measured all we could (follow G.Galilei)
- Filtration by total number
- Filtration in 60 size classes
- Filtration by total mass
- Filtration by EC+OC
- Filtration by PAS (PAH?)
- Filtration by DC
- + CO, NO, NO2, HC

and later

- + Secondary Emissions
- + Metal Oxides
- + Surface, Morphology, Activity

Going into the depth and using all available instrumentation we had from beginning information on

- Particle number distribution by SMPS
- Particle size distribution by SMPS
- Particle surface (Fuchs surface) by DC
- Particle BET-surface by primary particle size evaluation
- Particle mass distribution calculated from SMPS
- Total particle mass gravimetric acc. to the legal requirement
- Total Particle number 23-2500 nm as later required by PMP
- Indications on PAH coating by the NanoMet PAS-Sensor
- Secondary Emissions by HR-MS for trace substance analysis
- Metal Oxides by HR ICP-MS for all metals

Guided by Occupational Health

starting aerosol science in mines had defined Particles Sizes deposited in Lung Compartments in 1959 VERT:

SUVA, AUVA, TBG

required elimination of **solid insoluble particles**

< 500 nm

and to limit each substance inividually

PROCEEDINGS OF THE

Pneumoconiosis Conference

held at the University of Witwatersrand, Johannesburg 9th – 24th February, 1959

Edited by

A. J. ORENSTEIN M.D., D.Sc., LL.D., F.R.C.P. Director, Pneumoconiosis Research Unit

Allo Unitiliars, Anstalt Wish

2. 111 1969

LONDON J. & A. Churchill Ltd. 104 GLOUCESTER PLACE, W.1.

677

Guided by aerosol physics ETH – Prof.H.C.Siegmann

SOOT DEPOSITION IN THE HUMAN RESPIRATORY TRACT

TIME (min)

Guided by

Dockery NEJM 1993

6-Cities-Study USA 1978-93 15'000 cases

Correlation with fine particles only:

Never wait for Epidemiology, it comes always far too late D.Dockery ETH-NPC 2014

Guided by a scientific network wordwide expanded

- 1997 first international ETH-NPworkshop - 40 participants
- Today ETH-NPC is the annual event of UFP experts from science to technology > 400
- 20th conference June 2016
 13th to 16th no participation fee

Invitation and call for papers to the

19th ETH-Conference on Combustion Generated Nanoparticles

Focus Event: Air Quality in Megacities

June 28th – July 1st, 2015 ETH Zurich, Switzerland www.nanoparticles.ethz.ch

Develop Nano-Metrologie → The Golden Instrument

Aerosol Research

strange coincidence

The most sensitive size range of the Lungs is the most intensive emission range of the Engines and the weakest size range of Filtration

→ VERT Basic Conclusion:

Filter quality depends on aerosol properties like size distribution and on space velocity and not on engine properties \rightarrow test on one engine for worst case conditions is enough, but scrutinize on chemistry for toxicity

Product Certification VERT-Parameters on Filtration and Detoxification resulted in Best Available Technology

What happened in Europe and in the USA? → PM reduction – PN stagnation

From fresh to aged Aerosol → by Agglomeration, Scavenging, Condensation, SOA-formation

Primary particles have a diameter of 20 nm – they agglomerate very fast and we measure about 1-10 Mio P/cc with old and with new engines in the tail pipe

Hinds-Textbook 1982

Particles are coated by PAH and decorated by metal oxides

The Trojan Horse Effect

Finding Metal Particles Liebherr Diesel 110 kW 8 operation points of ISO 8178/4 C1 test cycle OP 8 = idle Sampling: 300°C, Dilution Ratio DR=100

Finding Dioxins, Furans, PAH and more → VERT filter industry w/o secondary emissions

Finding Petrol Engine Particle Emission

Diesel

Sootpeak: 80 nm; 10⁶ Ashpeak: 10 nm; 10⁷

PetrolSootpeak:40 nm; 105Ashpeak:10 nm; 107

→ And a whole new market

Understand Toxicity Contributors

along the way of the particle entering the organisme

process	parameters	quantify	
Location of	Diffusion	Size,	
aerosol deposition		Hygroscopicity	
Contact with body	Solubility in water	solubility	
surface	in Mucus, Surfactants?	Lipophility	
Translocation	Cell membrane penetration; Phagocytosis	Size	
Interaction	Overall Toxixity	MAK (Threshold)	-
	Bioavailability	?	
	Cytotoxicity	?	—]
	Mutagenicity	?	—
	Carcinogenicity	?	
Excretion	Biopersistence	Decay Time	

Source: M.Kasper, ETH-NPC 2007

HEQ Index Value

HEQ Health Effect Equivalent

based on physico-chemical parameters

PM10-HEQ Influence Factors Example

PM10- Compounds	EC < 500 nm	EC > 500 nm	Metals Minerals > 500 nm	Metals <100 nm	Sea Salt	ом	Benz(a) Pyren	Ammonia	Nitrate	Sulfate	Water
Mass %	15	2	10	2	15	20	0.01	10	10	10	6
Solubility	1	1	1	1	0.001	0.2	1	0.01	0.01	0.1	0.0001
Mobility	1	0.1	0.1	1	1	1	1	1	1	1	1
Toxicity	1	0.1	0.1	10	0.01	0.1	50	0.1	0.1	0.1	0.001
HEQ -Index	1	0.01	0.01	10	0.00001	0.02	50	0.001	0.001	0.01	0.000001
PM10-HEQ	15	0.02	0.1	20	0.00015	0.4	0.5	0.01	0.01	0.1	0.000006

Starting Biologic Research

aerosol exposure from different technology to human lung cells the closest one can be to reality

→ Metals → NO_2 → SOA → Fuels → Lubes → Catalysts

Test vehicle

Exhaust sampling

and ambient Air Criteria?

Measurements in China:

20.12.2012

18.12.2013

90-120.000 PN/cm³ at reported PM2.5>300µg/m³ → unhealthy air

200.000-500.000 P/cm³ at reported PM2.5<50 μ g/m³ \rightarrow healthy air ??

Apparent disconnect between PN number concentrations and PM concentrations in highly polluted atmospheres which metric characterizes pollution best ?

Aerosol Society is preparing the Standards for ambient Air PN measurement to replace PM

Table 1 Air pollution cost factors in EUR/ton of pollutant (€2008 values)

Pollutant	PM _{2.5}	(exhaust)		PM ₁₀	(non-exhaust)		NOx	NMVOC	SO ₂
Region typ	e Metropolitan	Urban	Non-	Metropolitan	Urban	Nor			
			urban						
Source	HEATCO	*UBA/	HEATCO	*UBA/	*115	^N G)	NEEDS	NEEDS	NEEDS
		HEATCO		HEATCO					
Country									
Austria	482,200	155,900	80,700				00	1'600	10'000
Belgium	483,400	156,000	104,400				2	2'600	10'900
Bulgaria	70,500	22,700	<u>\$</u> (100	400	6'200
Czech	355,400	114.50				للار	10'600	1'100	9'500
Republic									
Denmark	436,40					20,500	5'300	1'200	5'700
Estonia	24				34,000	17,700	2'800	600	4'500
Finland	432				55,800	14,400	2'600	600	3'500
France	438,6			175,500	56,500	35,100	10'500	1'400	9'900
Germany	430,300			172,100	55,500	33,600	12'700	1'400	10'900
Greece	338,600		,700	135,400	43,600	19,100	2'700	600	5'800
Hungary	288,900		74,100	115,600	37,200	29,600	12'400	1'000	9'100
Ireland	537,200		56,200	214,900	69,300	22,500	4'400	1'100	5'400
Italy	Curitzorland		400	700	140 500	0	2 400	00	8'700
Latvia	SWILZerland		470	,700	160,500	0	2,400	700	5'000
Lithuania	266,300	86,500	53,300	106,500	34,600	21,300	5'600	800	5'700
Luxembour	g 877,100	282,400	125,000	350,800	112,900	50,000	12'700	2'400	10'300

Switzerland	498,700	160,500	82,400
Poland	248,900	79,900	74,700

Value chosen: 460 CHF/kg PM10

and now with 100 Millions of DPF we are again leading Europe with NPTI developing new procedures and instruments for maintenance and control

VERT-Team power on demand

M. Wyser A. Stettler A. Mayer

F. Legerer J. Mooney

 $u^{\scriptscriptstyle b}$

6 UNIVERSITÄT BERN

ETH H.C. Siegmann

H. Egli W. Scheidegger

& sein Team

Keep in mind «What gets us into trouble is not what we don't know It's what we know for sure that just ain't so»

Mark Twain