

TEKNOLOGISK

Diesel particulate filters in marine use – performance evaluation after three years of service

Troels Dyhr Pedersen, PhD, senior consultant Danish Technological Institute March 24.th 2022 TEKNOLOGISK INSTITUT

Agenda

- Introduction to the retrofit project
- Performance evaluation of DPF retrofit installations on M/F Isefjord
- Presentation of a sulfur tolerant retrofit aftertreatment solution for HD marine engines with SCR and DPF

Project title: Marine aftertreatment solutions for vessels operating in coastal waters EXILATOR

- Project purpose is to develop, implement and demonstrate emission • aftertreatment technology for marine vessels in coastal waters in Denmark
- Technology suppliers gain competence to enter marine retrofit projects
- Funded by Environmental Technology Development and Demonstration • Program (MUDP) under Ministry of Environment of Denmark

AARHUS

UNIVERSITY

INSTITUT

Project title: Marine aftertreatment solutions for vessels operating in coastal waters

- Demo 1: M/F Isefjord, RO-RO ferry. Engines retrofitted with DPF in 2018 by Exilator ApS
- Demo 2: World Marine Offshore. Planned retrofit with DPF and SCR on main engines by Purefi A/S
- Demo 3: M/S Pernille, passenger ferry built 1981. Demonstration cancelled in 2020

Specific emissions of vessels before retrofit

INSTITUT

Installation on M/F Isefjord (built 2013)

- All engines retrofitted with catalytic DPF
- Main engine DPF regenerate passively in operation
- Aux engine DPFs have scheduled periodic regeneration

EXILATOR

Engines	Model	Rating	Emission
2x Propulsion	Cummins QSK-19M	373 kW MCR	IMO Tier II
2x Aux power	Cummins 6CT8.3-D(M)	122 kW Prime	IMO Tier II

Instrumentation for measuring particulate reductions on M/F Isefjord

Instrument		Principle
TSI NanoScan	PN, PSD	Scanning mobility particle sizer
DustTrak DRX	PM	Laser scattering
Pegasor Mi3	PM (PN)	Diffusion Charge (variable dilution)
Testo MD19-3E	Dilution	Rotation Disc thermodiluter
Catalytic Instruments CS015	Volatile elimination	Catalytic stripper
Testo 350 Maritime	NO, NO2, CO, CO2, SO2, O2	Electrochemical (CO2 with NDIR)

Instrumentation for onboard PM/PN mesaurement

Reference PM measurements with DustTrak and gravimetric sampling with dilution tunnel (ISO 8178)

- DustTrak DRX optical measurements correlate well with gravimetric measurements
- Gravimetric measurements are not possible after DPF – DustTrak and other instruments are being used for measuring PM/PN to determine filter efficiency

INSTITUT

Particulate number (PN) reductions

Year	Time in operation	Engine	DPF efficiency
2018	8 months	Main engine Aux. engine	99.6 % of PN 99.8 % of PN
2020	34 months	Main engine	97.3 % of PN

- Efficiency as expected for closed wall DPF in first measurement
- Second measurement indicates possible leakage in casing sealings, likely after DPF monoliths have been removed and reinstalled after ash removal
- Exhaust gas leakage through bypass valve has also been observed

Catalytic conversion of NO to NO_2 (measured after 34 months)

 $\rm NO_2$ and $\rm NO_X$ concentrations after DPF

Ratio of NO_2 to NO_X after DPF

Noise reduction

TEKNOLOGISK

Installation on World Calima (build 2014)

- Demonstration vessel with trimaran design, no room for systems in engine bay
- Systems are mounted on top of ship
- Target is IMO Tier III (NOx), Stage V (PM/PN)

Engines	Model	Rating	Emission
4x Propulsion	Scania DI 16	605 kW MCR	IMO Tier II
2x Aux power		50 kW Prime	IMO Tier II

TEKNOLOGISK

Sulfur tolerant aftertreatment system with DPF and SCR

Sulfur tolerant aftertreatment system with DPF and SCR

- Sulfur tolerant catalytic coating to at least 0.1% sulfur, limit in SECA zones
- Coatings provided by Umicore Automotive Catalysts
- DPF monoliths delivered by LiqTech Ceramics
- System integration, urea dosing and system control/monitoring by Purefi
- Integrated automatic bypass valve for safe operation at sea

